Membrane selectivity by W-tagging of antimicrobial peptides.

نویسندگان

  • Artur Schmidtchen
  • Lovisa Ringstad
  • Gopinath Kasetty
  • Hiroyasu Mizuno
  • Mark W Rutland
  • Martin Malmsten
چکیده

A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the presence of cholesterol. As exemplified for GRR10W4N (GRRPRPRPRPWWWW-NH(2)), potent liposome rupture occurs for anionic lipid systems (dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) and Escherichia coli lipid extract) while that of zwitterionic dioleoylphosphatidylcholine (DOPC)/cholesterol is largely absent under the conditions investigated. This pronounced membrane selectivity is due to both a lower peptide binding to the zwitterionic membranes (z≈-8-10mV) than to the anionic ones (z≈-35-40mV), and a lower degree of membrane incorporation in the zwitterionic membranes, particularly in the presence of cholesterol. Replacing cholesterol with ergosterol, thus mimicking fungal membranes, results in an increased sensitivity for peptide-induced lysis, in analogy to the antifungal properties of such peptides. Finally, the generality of the high membrane selectivity for other peptides of this type is demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing

BACKGROUND Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS...

متن کامل

Pronounced peptide selectivity for melanoma through tryptophan end-tagging

Effects of oligotryptophan end-tagging on the uptake of arginine-rich peptides into melanoma cells was investigated under various conditions and compared to that into non-malignant keratinocytes, fibroblasts, and erythrocytes, also monitoring resulting cell toxicity. In parallel, biophysical studies on peptide binding to, and destabilization of, model lipid membranes provided mechanistic insigh...

متن کامل

Physical basis for membrane-charge selectivity of cationic antimicrobial peptides.

Antimicrobial peptides are known to selectively disrupt (highly charged) microbial membranes by asymmetrical incorporation into the outer layers. We present a physical basis for membrane-charge selectivity of cationic antimicrobial peptides. In particular, we provide a clear picture of how peptide-charge Q influences the asymmetrical insertion--one salient feature is the existence of an optimal...

متن کامل

Biol. Pharm. Bull. 28(1) 148—150 (2005)

naturally-occurring antimicrobial peptides provide a valuable tool for studying the role of different structural features in the activity of those peptides. A large array of derivatives based upon these structural models has been synthesized and studied in an attempt to increase the potency and selectivity of the native antimicrobial peptides. Enhancing the antimicrobial potency is often accomp...

متن کامل

Boosting antimicrobial peptides by hydrophobic oligopeptide end tags.

A novel approach for boosting antimicrobial peptides through end tagging with hydrophobic oligopeptide stretches is demonstrated. Focusing on two peptides derived from kininogen, GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN (HKH17), tagging resulted in enhanced killing of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and fungal Candida albicans. Microbicidal potency in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1808 4  شماره 

صفحات  -

تاریخ انتشار 2011